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Abstract-In the present work for circular cylindrical shells, three-dimensional elasticity equa­
tions are solved by assuming Taylor series expansions, in the radial direction, for the stresses
and displacements. Depending upon the number of terms retained in the expansion, different
order shell theories are derived" classical theories (referred to as eighth-order), the shear
deformation-transverse normal stress theories (referred to as tenth-order), and higher order
theories (referred to as twelfth-order). In each case, by carrying out the symbolic algebra
using the digital computer, partial differential equations are derived. The procedure was carried
out in detail for the case of a circular cylindrical shell with no loading on the interior surface
and a given pressure distribution on the exterior surface. Then, numerical comparisons are
made between the current theories and various shell theories, as well as the exact (three di­
mensional) theory. Thus, using this method with its associated computer programs, one can
realize a spectrum of approximate shell theories ranging from the classical thin shell, through
all current thick shell theories, right up to the three-dimensional elastic theories.

NOTATION

r, e, z Cylindrical coordinates.
u, v, w Normalized displacement components.

ro Middle surface radius of cylinder.
a Inner radius of cylinder.
b Outer radius of cylinder.

r, z Normalized radial and axial coordinate.
h Thickness of shell.

JJ. = hla Normalized thickness.
'I'm Tre, Tze Normalized shear stress components.

(I,., (I., (Iz Normalized normal stress components.
p=_l_

I - v
d

[3 =-de
d

cx=a-
dZ

d
a () = ( )'ar

h Exponential coefficient.

INTRODUCTION

In the present work, the method of initial functions has been used to solve the elasticity
equations for isotropic materials by assuming Taylor series expansions for stresses and
displacements in the radial direction at interior or exterior edges, for circular cylindrical
shells. Comparison is then made with classical shell theories of different orders, as well
as three-dimensional shell theory as a special case of elasticity theory.

The method of initial functions, in which the elasticity equations are solved by
assuming Taylor series expansions for stresses and displacements was introduced by
Vlasov[l] for elasto-static problems. Das and Setlur[2] applied the method to two­
dimensional elasto-dynamic problems both in plane stress and plane strain in which
Maclaurin series were expanded in the thickness direction.

Haydl[3] used Vlasov's method of initial parameters for symmetric bending of
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cylindrical shells, and by an example he showed his method is applicable for the solution
of shells with many supports or concentrated loading.

Iyengar et. al[4] used this method for investigating thick rectangular plates, for
the case of two opposite edges simply supported and the other two edges clamped.

Das and Rao[S] applied this method to thick plates subjected to antisymmetric and
symmetric lateral loads.

This method was extended by Iyengar and Chandrashekhara[6] for the case of
axisymmetric cylindrical shells.

In the present work, the earlier work is extended in two important ways. First,
the more general case of an unsymmetric shell is allowed; secondly. the computer
algorithm to be developed will allow the derivation of thick shell theories of arbitrarily
high order.

The present work addresses itself to isotropic circular cylindrical shells, although
it will be seen that the more general case of anisotropic materials would follow along
similar lines, but with more involved algebra.

For circular cylindrical shells, three-dimensional elasticity equations are solved
by assuming Taylor series expansions, in the radial direction for stresses and displace­
ments, making use of a convenient point within or at the edge of the shell. The for­
mulation becomes exact when an infinite number of terms are used in the Taylor series
expansions.

In practice, only a finite number of terms can be used, and the number of terms
to be retained depends on the accuracy desired for a given ratio of thickness to radius
(h/a). For thick shells, it is necessary to retain more terms.

Depending upon the number of terms retained, one recovers the classical theories
(referred to later as eighth-order), the shear deformation-transverse normal stress the­
ories (referred to as tenth-order), and higher order theories (referred to as twelfth­
order, etc.).

In each case, by carrying out the symbolic algebra using the digital computer, it
is possible to derive partial differential equations for the different shell theories of
arbitrarily high order (only limited by the storage capability of the computer).

One can recover the associated boundary conditions for any given problem to the
same order of accuracy as used in the derivation of the differential equation.

Thus, using this method with its associated computer program, one can realize a
spectrum of approximate shell theories ranging from the classical thin shell, through
all current thick shell theories, right up to three-dimensional elastic theories.

In many problems (i.e. involving stress concentrations and other problems where
analytic solutions are preferred to numerical solutions found by finite element or finite
difference methods), this method is of particular value for deriving suitable differential
equations and boundary conditions for a shell with a given h/a.

In order to demonstrate the comparative accuracy of the various theories, nu­
merical comparisons are made between the current theories and various shell theories,
as well as the exact (three-dimensional) theory.

Analysis
Starting from three-dimensional elasticity equations, particular relations among

stresses and displacements and their derivatives are found in matrix form. Then, by
successive differentiations of these equations, relations between stresses and displace­
ments and higher derivatives are found.

Using a matrix notation and substituting these derivatives into Taylor series ex­
pansions at a given point along the radius (exterior or interior edges or mid-point) yields
a formal series solution of the elasticity equations.

The differential equations of equilibrium and strain components of an isotropic
elastic body in cylindrical coordinates r, 8, z with corresponding displacement com­
ponents u, II, IV in the general case are:
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afir 1 a1're a1'rz (J'r - ao __ 0-+--+_.+---
ar r ae az r

a1'rO 1 afio a1'oz + 2 1'ro -_ 0-+--+-ar r ae az r

1 au av v au
'Yre = -- + - , Er = -

r ae ar r ar

au aw u av
'Yrz = - + -' Eo = - + -

az ar
,

r rae

av 1 aw aw
'Yzo = - + --' Ez = -

az r ae ,
az

and, according to the generalized Hooke's law for an isotropic material,t
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(1)

(2)

1 + fiz]; Tro
Er = E [fir - V (fio 'YrO

G

1 _
V (fir + fiz)];

T rz
(3)Eo = - [ao - 'Yrz =-

E G

1
+ fio)];

1'zo
Ez = E [fiz - V (fir 'Yzo =

G

For cylindrical layer studies, we can reduce eqns (1), (2), and (3) from a system
of 15 equations to a system of six first-order equations with respect to the, derivatives
regarding alae, alaz as formal symbolic operators,

In matrix form, the six equations become

[Y]' = [5] [Y], (4)

where

(vP ,- 1) -a -[3/, 2P 2P[3 2vPa
,2 ,2 ,

-avP 0 2vPa C+ V) (2pa
2 + ~:)--- -a[3P -,-, ,

[5]
[3

0
2 2P[3 -(a2 + 2~r) C+ V)-vP- a[3P -,-, , ,2

G-v)p 0
vP vP[3 -vPa

0 , ,
0 0 -~ 0, ,
0 0 -a 0 0

t This method can also be used for anisotropic materials with the same algebraic procedure.
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ar
,

ar

T rz
,

T rz

Trll
,

[Y] = [ Y]' Trll

U U'

V v'
w w

,

with ( )' = a i ( ) remaining stresses can be obtained from
iJr

2vP 2vP
a z = - u + - f3v + 2Paw + v P ar

r r

2P 2Pf3
all = - u + - v + 2 Paw + v P ar

r r

f3
T z8 = av + - w.

r

(5)

Higher derivatives of [Y]' can be obtained from eqn (4) by successive differentia­
(I)

tions. (Note: It is convenient to write Sij = Sij) then

(I)

Y; = LSijYj

(I)' (I)

Y;' = L (Sij Yj + Sij y})

(I)' (1)(1)

Y'! = L (Sik + SijSjd Yb

or

(2)
Y'! = L Sik Yk

where

(2) (I)' (1)(1)

Sik = Sik + Sij Sib

etc. Now for the nth derivative

n (n)
[Y] = [S] [Y]

(6)

(7)

(8)

(n)
In eqn (8) [S lis a matrix of differential operators 0., f3 for any order of derivation.
For any given Poisson's ratio v and any radius r in radial direction ranging from

(n)
1 to 1 + IJ., computer programs:j: give elements of [S ] up to n = 7 as function of 0.,

f3.

:j: Copies of these programs are given in [7J.
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HIGHER ORDER THEORIES FOR THICK CYLINDRICAL SHELLS

Now, by making use of shell boundary conditions in the radial direction, we derive
partial differential equations for cylindrical shells ranging from classical through current
thick elastic shell theories, as well as new higher-order shell theories.

In order to compare the various theories with the exact theory, we are going to
study, as a special case, a circular cylinder with no loading on the interior surface and
a given pressure on the exterior surface§, i.e. at

r = I; (jr = 'Trz = 'Tr 9 = 0

r = I + /.1; (jr = - q, 'Trz = 'Tr9 = O.

It may be noted that other classes of practically important problems can be studied
along very similar lines, e.g. a cylindrical elastic layer with a stress-free outer surface
and bonded to a rigid cylindrical shaft at r = 1 would have boundary conditions:
at

r 1; u=v=w=O

r = I + /.1; (jr = 'Tr!J = 'Trz = 0

Taylor series expansions
In order to derive partial differential equations governing the various theories, we

use Taylor series expansions at the interior (r = I) or exterior edge (r = 1 + /.1), by
using the notation previously developed.

Expanding about the interior edge:

or

[ fer)]
(1) (1)2 (2)

= [Y(1)] + (r - 1) (S (1)] [f(l)] + r ;, [S (I)] [f(1)] + ....

(9)

Expanding about the exterior edge:

(f(r)] = l Y(b/a)] + L~ I (r - ~/a)m ~~) (b/a)]} l f(b/a)]. (10)

Derivation of equations for shells tvith an inner surface free of loading, and an
outer surface under pressure

For a cylinder with no loading on the inner surface, and pressure acting on the
outer surface, we have:

r = I; (jr = 'Trz = 'Tr9 = 0

r = 1 + /.1; (jr = - q, 'Trz = 'T r9 = O.

Now, by applying the above boundary conditions to eqn (9), we find:

{

M m (m) }
[Y(b/a)] = [Y(I)] + m~1 ~, [S (1)] [Y(l)]

(11)

(12)

§ The more general case of three stress components presented on both edges would follow along similar
line.
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or

U r (~)
1'"--------;'1

- q 0
(m) (m) (m)l(m) (m) (m),

°I

Til T I2 T I3 ~ T I4 TIs T 16 :

Tr~ (~) 0 0
(m) (m) (m): (m) (m) (m):

0
T 21 T 22 T 23 : T 24 T 25 T 26 :

T r8 (~)
I I

0 0
(m) (m) (m):(m) (m) (m),

0
T 31 T 32 T 33 L-r.3j x.3.:.~ J'..3~

U (~) U (~) u(l) +
(m) (m) (m) (m) (m) (m)

u(1) (13)
T 41 T 42 T 43 T 44 T 45 T 46

11 (~) V (~) vel)
(m) (m) (m) (m) (m) (m)

v(l)
T51 T"2 T53 T54 T55 T56

W (~) W (~) w(1 )
(m) (m) (m) (m) (m) (m)

w(1)
T61 T62 T63 T64 T65 T6f,

where

(m) III III (m)
Tu = L ~, Sit" (I)

m..

or, because the present problem involves stress boundary conditions at bla, we write:

(m) (m) (m)
u(l) 0

T34 T 35 T 36

(m) (m) (m)
v( l) 0

T 24 T 25 T26

(m) (m) (m)
w( 1)

T I4 TIS T I6
-q

which can be rewritten in the form:

Let

(m) 1 (m)

au = I Ski (I)
m.

where

(14)

(15)

therefore

k = 4 - i; / == j + 3,

(m)

A - ~ In
ii - L.J I-L au,

I

or with [U(l)V =: [u(l), v(1), w(l)] and [QV = [0,0, -q]

[A] lU(l)] = lQ].

(16)

(17)
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We note that u, v, ware functions of r, e, z, while u(l), v(l), w(l) are function of
e and Z only, and [A] is a matrix of differential operators.

Equation (17) represents a set of three partial differential equations. Nontrivial
homogeneous solutions of (17) involve an equation of the form:

I A I F = 0, (18)

where F is a convenient auxiliary function.
In practice, the number of terms to be retained in eqns (9) or (10) in the Taylor

series expansions depends on the ratio of thickness to radius (h/a) and the accuracy
desired.

In the expansions, if one retains terms up to third derivative, then the result IA IF
= 0 will be called the eighth-order shell theory; then, by adding fourth derivative terms,
the result will be called the improved eighth-order shell theory; and then by adding
fifth up to eighth derivative terms, the results will be called tenth-, improved tenth-,
twelfth-, and improved twelfth-order shell theories.

By comparing the results of I A I F = 0 for each case, one notices that by adding
the fourth derivative terms, the coefficients of what we call the eighth-order shell theory
have been stabilized, which means adding the fifth, sixth, seventh, and eighth higher
derivatives does not change the coefficients of terms in the eighth-order theory.

Also by adding the sixth derivative terms, the coefficients of the tenth-order theory
have been stabilized, and by adding the eighth derivatives, the coefficients of twelfth­
order theory have been stabilized.

The following table shows the different order shell theories corresponding to the
number of derivative terms retained in the Taylor series expansion.

Computer programs which produce, respectively, elements of [A] and the coef­
ficients of I A I as functions of ex, 13, and f-L for expansion at interior edge (r = 1) for a
given v for different orders eighth- up to improved twelfth-order, are given in [7].

As a check on the computer algorithms up to the fourth derivative, elements of
[A] have been derived by hand and are given in Table 2. They are given as a function
of v, whereas the computer programs are written to accept a given numerical value
for v.

For the eighth- or improved eighth-order, expanding the determinant after dividing
by f-L5 p2/3 gives:

(19)

Where Gs represents terms in (19) of f-L and higher order.
As mentioned before, for a given v, computer programs give coefficients of all

terms in I A I which include Gs •

Table I. Relation of the number of derivative
terms to the order of the shell theory

No. of
Derivative

Terms = IX

3
4
5
6
7
8

Order of Shell
Theory = 10

Eighth-order
Improved eighth-order
Tenth-order
Improved tenth-order
Twelfth-order
Improved twelfth-order
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Table 2. Elements of [AI up to fourth derivatives as functions of Ct, 13, fl., v

All = fJ.{-2P!3} + fl.2/2{2P!3' + 2Pa2!3 + 8P!3} + fJ.'/6{-4Pa 2!3(1 + v) 8P!3' - 38P!3}
+ fl.4/24{ -4P!3' - 4Pa4!3 - 8Po:2 !3' + 30P!3' + 2a2!3P(12v + II) + 214P!3}

AI2 = fJ.{ - a 2 - 2P!32} + fJ.2/2{a2 + 6P!32} + fl.3/6{o:4 + 4P!34 + a2!32P(5 - v) 6a2 - 26P!32}
+ fJ.4/24{ -2a4 - 40P!34 + 6lt2!32p(5 - v) + 30a2 + 140P!32}

Au = fJ.{-a!3P(1 + v)} + fJ.2/2{aI3P(5v + 3} + fL'/6{a'I3P(v + 3) + al33p(v 3)
- 2a13P(6 + I3v)} + fJ.4/24{ 2a133P(15 + 7v) - 2a313P(9 + 5v) + 2a13POO + 77v)}

Acl = fJ.{ - 2vPa} + fL2/2{2Pa3 + 2Pa132 + 2avP} + fL3/6{ - 2a3
- 6a132 6vPa} + fL4/24{ - 4Pa'

- 4Pa!34 - 8Pa3132 + 2a3P(5 - 2v) + 2l~132p( 13 - 18v) + 24vPa}

A22 = fl.{ -aI3P(I + v)} + fL2/2{al3l2} + fl.'/6{a-'!3P(v + 3) + al3'P(v + 3) + al3P(v - 3)}
+ fl4/24{2Pa 313(v - 3) - 2a133P(9 + v) + 2Pal3(6 - v)}

A2, = fl{ -2Pa2 - 132} + fl2/2{3132 + 2Pa2
} + fl316{4Pa4 + 134 + a 2!3 2P(5 v) 6Pa 2

- 11!32}
+ fl4/24{ - 8Pa4

- 10134 + 6a 213 2p(v - 5) + 24Pa2 + 50132}

Al I = fl{2P} + fl2/2{ - 6P} + 1J,3/6{ - 2Pa4 - 2P134 - 4Pa213 2 + 4vPa2 - 8P!32 + 24P}
+ fl4/24{4Pa4 + 20P134 + 24Pa213 2 24vPa2 + 80P!32 - 120P}

Al2 = fL{2Pj3} + fJ.2/2{2Pl3a2 + 2PI3' 4PI3} + fl316{-16PI33 + 4a213P(v 2) + 14PI3}
+ fl4/24{ -4PI3' - 8Pa2133 - 4Pa413 + IIOP133 + 2a213P<23 - 1211) 66PI3}

All fl{2vPa} + fJ.2/2{2Pa 3 + 2Pa132 6vPa} + fJ. 316{ - 2Pa3(v + 2) - 6aI32p·(v + 2) + 2411Pa}
+ fl4/24{ -4Pa' - 4Pa!34 - 8Pa313 2 + 6a'P(3 + 211) + 2Pa!32'07 + 30v) 120vPa}

A class of homogeneous solutions
In order to compare the present higher-order shell theories with some of the pre­

viously-derived shell theories and with the elasticity theory, one could solve a specific
boundary value problem and compare the predicted stresses and displacements. In the
interest of comparing the theories for a whole class of practical shell problems, we
take a particular class of homogeneous solutions which are used in books on shell
theory to study bending effects in shells[8]. For closed cylindrical shells, solutions that
are periodic in e are useful, since the various cylindrical shell theories have constant
coefficients, as seen in (19). A useful class of solutions is of the form:

v(l) (20)

where A is to be determined.
Now, if we substitute the above expressions into eqn (15) for different cases (eighth­

order up to improved twelfth-order), we will get, in each case, a set of three simul­
taneous equations for A"n, BA", CAn which will be satisfied, provided that:

(21)

For nontrivial solutions, IL I must vanish, which results in an equation for A and
n for given IJ- and 11 values.

For the eighth-order case:

Ps = 1211.4 (1 + v) + 1J-2p [(112 - n2 )4 - 2n6
- 6(1 - 112 )11.6

- 6v2 A4112 + 811.2114 + 63 ",4 (l - v2 ) + 114

- 411.2 n2
] - 30 ",4 (I + 11) IJ- = o. (22)
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Terms of higher order than f.L2 have been neglected in above equation, because f.L
is small for thin shells studied with the eighth-order theory.

For a given f.L, the corresponding equation from the Fliigge[8] and Sanders[9] the­
ories are

PS,Sanders

PS,Fltigge = 12A4 (1 + v) + f.Lzp [(AZ
- n2

)4 - 2n6 + 2VA6

- 6A4 nZ
- 2Azn4 (v - 4) + A4 (4 - 3vz) + n4

- 2 AZnz (2 - v)] = °
12A4 (1 + v) + f.Lzp [(AZ

- nZ )4 - 2n6

- 4AZn2
] = 0,

(23)

(24)

where the underlined terms in eqns (22-24) indicate terms that are in common to pairs
of the above theories.

In comparing the three theories, we see that the zeroth-order f.L0 term, 12 A4 (1 +
v), appears in all three theories, as well as the eighth-order terms in Aand n.

The lower-order terms in Aand n, i.e. sixth- and fourth-order, differ for the three
theories. This means that, for larger Aor n, they would all asymptotically give the same
roots.

Computer programs ll calculate elements of [L] and coefficients of I L I = °as a
function of A, n, f.L for a given v for eighth-order up to improved twelfth-order theories.

SOME NUMERICAL RESULTS FOR "END SOLUTIONS" OF HIGHER ORDER

SHELL THEORIES

We are going to calculate roots of polynominals which provide solutions for dif­
ferent-order shell theories. These solutions will be compared with solutions from clas­
sical shell theories and three-dimensional elasticity solutions.

Roots of characteristic polynominals
Eighth-order theory. From eqn (21) we see that eighth- or improved eighth-order

theory leads to fourth degree equations for A2
•

We will see that its four roots are two pairs of conjugate complex roots, and
therefore will have four pairs of conjugate complex numbers for A-rootS.

The eight roots may be written in the following form

AI - XI + iYI, A5 = XI + iYI

hz - XI iYI, h6 = XI iYI (25)
h3 - Xz + iyz, h7 = Xz + iyz

h4 = - X2 iyz, hs = Xz iyz,

where the Xk, Yk are real.
Each of the eight values h; yields in independent solution of (15).
Tenth-order theory. In the case of tenth- or improved tenth-order theory, we

must have at least one real root for hZ, since we have a fifth-order polynomial in A2

with real coefficients; therefore, since it turns out that the real A2-root is positive, we
get

(26)

where X3 is real.

~ See [7].
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Table 3. Exponential coefficients for eighth-order and improved eighth-order theories (~ = .3).11 = ,.5
and h/ro = .01 .. 1

h/ro

.01

.1

Eighth-order Improved eighth-order
n

A , 5 5

XI .331273 .990640 .335941 1.0049/1
.\'1 .315894 ./160523 .320096 .871050
.X2 13.2272 13.8865 13.1977 1\.1\66,
}'2 12.4340 11.8896 12.\962 11./1457

XI .7538 2.0543 1.1052 2.84/19
.\'1 .5210 .8486 .7117 1.2,91
x:? 5.1083 6.6279 5.145/1 6./1659
}'z 3.1586 2.6185 2.8910 2.4002

Table 4. Exponential coefficients for tenth-order and improved tenth-order theories (~ = .3). n = 3.5 and
hlro = .01 .. 1. .2

h/ro

.01

.1

.2

Tenth-order Improved tenth-order
n

A 3 5 3 5

XI .335896 1.00497 .335898 1.00498
.\'1 .320052 .8700998 .320054 .871004
X2 13.1668 13./1355 13.1666 13./1353
Y1 12.4285 11.8779 12.4286 11.8780
XJ 182.007 182.050 181.6/14 1/11.72/1
)'3 0 0 0 0
XI 1.0727 2.7723 1.0/140 2./1092
.\'1 .7118 1.1970 .7165 1.20 II
X2 5.0731 6.792/1 5.06' 1 6.7/137
)'2 3.0285 2.5599 3.0170 2.5322
XJ 17.980 18.225 17.556 17.9/13
.\'J 0 0 o. 0

XI 1.1748 2.3521 1.410, 3.2523
.\'1 .6388 .5298 .7345 1.0/101
X2 4.1164 5.7731 4.109 5./1/172
Y2 1.8210 1.277 1.6588 1.3022
XJ 8.8143 8.98936 8.6874 9.5/111
Y3 0 0 0 0

Table 5. Exponential coefficients for twelfth-order and improved twelfth-order theories (v = .3). 11 = ,. 5
and h/ro = .01. .1. .2

hlro

.01

.1

.2

Twelfth-order Improved twelfth-order
n

A 3

XI .335898 1.00498 .33589/1 1.00498
YI .320054 .871004 320054 .871004
X2 13.1668 13.8355 13.1668 13.8355
Y2 12.4287 11.8781 12.4287 11.87/1 I
XJ 208.061 208.094 207.990 208.023
.\'J 78.6954 78.6830 7/1.7130 78.7204

XI 1.08222 2.8026 1.0825 2.8038
.\'1 .7157 1.1995 .7158 1.1996
X2 5.0697 6.7916 5.0695 6.7912
Y2 3.0216 2.5373 3.0215 2.5371
X3 20.148 20.443 20.026 20.341
YJ 7.4184 7.3465 7.459 7.345

XI 1.3441 3.0260 1.3666 3.1290
.\'1 .7112 1.0232 .71/15 1.0424
X2 4.1265 5.88356 4.1232 5./18255
.\'2 1.7089 1.39250 1.6982 1.363/1
X3 9.8563 10.1911 9.7259 10.330
."'3 3.5541 3.5911 3.4505 3.2678
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Twelfth-order theory. In the case of twelfth- or improved twelfth-order theory,
it turns out that we have three pairs of conjugate complex roots X,2, which give four
more complex roots, eight of which are of the form given in eqn (25), along with

x'9 = X3 + iY3,

X,1O = - X3 + iY3,

x'il = - X3 - iY3

x'12 = X3 - iY3.
(27)

Corresponding to each root, we have a homogeneous solution for the corresponding
shell theory. These can be superimposed to solve end problems where shells are sub­
jected to edge forces and moments. Computer programs[7J give "ltv for eighth- up to
improved twelfth-order, for a given v, by inputting n, f..l.

Numerical comparisons
The following tables show roots of polynominals for n = 3, 5 and h/ro = .01, .1,

.2 (h/a = h/ro/(l - .5 h/ro» for present eighth- up to improved twelfth-order theories
(Tables 3, 4, and 5).

Results for Love's first approximation type theory, such as the theory given by
Fliigge[8J, are given in Table 6.

Table 6. Exponential coefficients (v = .3), n 3, 5 and
h/ro = .01, .1

hlro

.01

.1

n
A

XI

YI
X2

Y2

XI

YI
X2

Y2

3

.337750

.321524
13.20597
12.5183

1.14818
.748438

5.25693
3.27008

5

1.01058
.875004

13.8784
11.%52

2.97213
7.08014
7.08014
2.77926

Exponential coefficients have been calculated from
F1ilgge[8].

Table 7. Exponential coefficients (v = .3), n = 3, 5 and
hlro .01, .1, .2

n
h/ro

.01

.1

.2

XI

YI
X2

Y2
X3

Y3

3

.337725

.321503
13.2363
12.4880

316.247
o
1.1407
.7484

5.3454
3.1744

31.818
o
1.5159
.7871

4.5864
1.8836

16.2083
o

5

1.01037
.874888

13.9086
11.9350

316.272
o
2.95078
1.25401
7.1546
2.6694

32.071
o
3.4604
1.1423
6.52985
1.52634

16.7152
o

Exponential coefficients have been calculated from
Naghdi and Cooper[IO].
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Table 8. Exponential coefficients for the elasticity solution
(v = .3), n = 3, 5 and hlro = .01. .1 .. 2

n
hlro A 3 5

XI .338353 @ /.012656
@

,vI .322173 .875924

.01 X2 13.1151 @ 13.7825 ill
yz 12.3741 11.8168
x~ 310.539 @ 310.564 @
Y.~ 0 0

XI 1.08868 @ 2.8162
@

,vI .716860 1.1959

.1 X2 5.05255 @ 6.7690
@

.\'1 2.99760 2.5056
X, 29.7129 @ 29.9575 @
Y3 0 0

XI 1.3738 ® 3.1200 @
,vI .7157 1.0365

.2 X2 4.108 ® 5.86889
@j)

,v2 1.6703 1.35463
x~ 14.3856 ill 14.8506 ill,v, 0 0

Numbers in circles indicate number of steps in numerical
method.

Table 9. Comparison of exponential coefficients between current theories and classical shell theories as
well as the three-dimensional theory for v = .3. n = 3. hlro = .01

'7c Error '7c Error
Theory X2 UX2 x 10- ' in x, ,v, UV2 X 10 1 in ,v2

Eighth 13.2272 - 112 .85 12.4340 -60 .48
Fliigge l 13.20597 -91 .69 /2.5183 -144 1.15
Improved eighth 13.1977 -82 .63 12.3962 -22 .18
Tenth 13.1668 -52 .39 12.4285 -54 .44
Naghdi" 13.2363 -121 .92 12.4880 -114 .92
Improved tenth 13.1666 -52 .39 12.4286 -55 .44
Twelfth 13.1668 -52 .39 12.4287 -55 .44
Improved twelfth 13.1668 -52 .39 12.4287 -55 .44
Elasticity3 13.1151 0 0 12.3741 0 0

I Exponential coefficient has been calculated from Fliigge[8].
2 Exponential coefficient has been calculated from Naghdi and Cooper! 10].
3 Calculated using a numerical solution of the elasticity equation by a Runge-Kulla method as contained

in a program available from the Civil Engineering Department. Univ. of Mass. (TSHELL81).

Table 10. Comparison of exponential coefficients between current theories and classical shell theories. as
well as the three-dimensional theory for v = .3. n = 5, hlro = .2

% Error '7c Error
Theory X2 UX2 x 10 3 in X2 yz U,v2 x 10-' in ,v2

Tenth 5.7731 96 1.6 1.277 78 6
Naghdi 6.52985 -660 II 1.52634 -172 13
Improved tenth 5.8872 -18 .3 1.3022 52 4
Twelfth 5.88356 -15 .25 1.39250 -38 2.8
Improved twelfth 5.88255 -14 .23 1.36381 -9 .68
Elasticity 5.86889 0 0 1.35463 0 0
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Results for a shear deformation-transverse normal stress type theory, such as has
been given by Naghdi and Cooper[lO], are given in Table 7, and results of the three­
dimensional elasticity theory" in Table 8.

For purpose of comparison, in Tables 9-10 the various higher-order theories are
compared in terms of the real and imaginary parts of predicted exponential roots for

{~/~ : .01 ' {~/~ ~ .2 . As we notice in Table 9 for thin shells (h/ro = .01), tenth­

to improved twelfth-order theory are about the same and eighth-order theory gives
good results compared to higher order theories, and as we expected, eighth-order theory
gives good results for thin shells. But in Table 10 for a thick shell (h/ro = .2) by going
from tenth- to improved twelfth-order theory, we get noticeable corrections with respect
to the elasticity solution.

In Tables 3-5, by going from the present eighth- to improved twelfth-order theory,
we generally get improvement with respect to the elasticity solution, but as we notice,
the energy-type-based Naghdi and Cooper[10] theory gives more accurate results for
the highest mode compared to elasticity solution, because the example which is chosen
is in favor of Naghdi and Cooper's theory. If we would take other examples with loads
in radial direction, we would expect the present theories results to improve consid­
erably, as Iyengar and Chandrashekhara[6] showed in their study. They used the
method of initial functions for the case of axisymmetric circular cylindrical shell, sub­
jected to periodically spaced band loads.

Based on their numerical comparison with the Naghdi[ll] and Reissner[12] theories
as well as elasticity solutions, they concluded that their higher order theories (equiv­
alent to present eighth-, improved eighth-, and tenth-order theory for the axisymmetric
case) are more accurate for problems with radial loads. So, in our case, which is more
general (i.e. variation with 8) and allows for higher-order equations compared to Iyengar
and Chandrashekhara's theory, we would also expect very accurate results. Even for
the end problem, we could, of course, go to higher-order (e.g. fourteenth-, sixteenth-,
etc.) theories to get more accurate results.
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